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ABSTRACT 

Genetic programming (GP) is a powerful evolutionary algorithm introduced to evolve computer programs 
automatically. It is a domain independent, stochastic method with an important ability to represent programs of 
arbitrary size and shape. Its flexible nature has attracted numerous researchers in data mining community to use 
GP for classification. In this paper we have reviewed and analyzed tree based GP classification methods and 
propose taxonomy of these methods. We have also discussed various strengths and weaknesses of the technique 
and provide a framework to optimize the task of GP based classification. 
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1. INTRODUCTION 

Genetic Programming (GP) introduced by Koza in 1992 is an evolutionary algorithm designed for automatically 
constructing and evolving computer programs. This innovative flexible and interesting technique has been 
applied to solve numerous interesting problems. Classification is one of the ways to model the problems of face 
recognition, speech recognition, fraud detection and knowledge extraction from databases. 

Data Classification can be defined as assigning a class label to a data instance based upon knowledge gained 
from previously seen class labeled data. Various classification algorithms have been proposed and are being 
used depending upon their simplicity, understandability or accuracy. Simpler techniques like decision trees are 
simple and understandable but applicable to small data sets only. On the other hand statistical techniques or 
Neural Networks are not easily comprehensible. 
Evolutionary algorithms like Genetic Algorithms (GA) (1) have been found successful in solving classification 
problems. GP has emerged as an extension of GA proposed by Cramer (2) and Schmidhuber (3). GP differ from 
GA in the ability to evolve variable length solutions (computer programs). Later, Koza (4) used the term GP and 
popularized this technique as a new evolutionary algorithm rather than an extension of GA. GP has emerged as a 
powerful tool for classifier evolution. To date, many variations of GP have been introduced to handle the 
classification, this includes Linear GP, Grammar based GP, Graph based GP and Tree based GP (5). These 
variations differ in representations of solutions.  
GP works by evolving a population of randomly created initial programs using a fitness measure. It selects fitter 
ones to take part in the evolution to efficiently search for desired efficient solution.  The basic GP algorithm is 
similar to any evolutionary algorithms and works as follows. 

 
Algorithm GP Evolution 

Step 1. Begin 
Step 2. Define pop-size as desired population size 
Step 3. Randomly initialize pop-size population  
Step 4. While (Ideal best found or certain number of generations met) 

o Evaluate fitness  
o While(number of children=population size) 
o Select parents  
o Apply evolutionary operators to create children 
o End while 

Step 5. End While 
Step 6. Return Best solution 
Step 7. End 
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The following are the main steps involved to use GP for solving any problem. 
1.1 Problem Representation 
The representation of an individual is the method to construct the solution for a desired problem. This can also 
be termed as the data structure used to define an individual.  The representations used in GP can be divided into 
following types. 

Trees Based GP 
It is the most common representation used in GP. Trees can also be represented as LISP statements in which 
data and code are closely related although prefix notations or pointer based representations can also be used in 
some languages. In such cases, each individual (phenotype) must be executed using the data that constitutes the 
genotype of the individual. In such case all the data pairs are executed against the individual and the return 
values are used to calculate the corresponding accuracy or error, representing the fitness of the tree. 

Constrained Syntax GP 
Instead of simple binary trees, the trees might be needed where complex functions (like “if” having more than 
two arguments) are required. In such trees, some constraints must be placed on the genetic operators to maintain 
the validity of the tree after the operator has been performed upon. 

Cellular GP 
In cellular or indirect encoding, the trees represent programs that direct the creation of the second structure 
which is usually a graph structure, like neural networks or petrinets. A slightly modified form named edge 
encoding is also used to represent planar and simple graph structures. 

Linear GP 
 Another important type of GP representations is the list of machine language instructions. Linear GP and 
Grammatical evolution in GP use this type of representations. 

Graph based GP  
It is one of the most complex representation structures. These are usually used to represent and evolve neural 
networks, automata or petrinets.  

Grammar based GP 
This is another type of representation where a set of production rules are defined to use in creating population 
members.  
The focus of this thesis is the simple tree based representations that are created using a predefined set of 
terminals and functions in a primitive set. Such a representation is simple and has been used frequently for the 
data classification problem.  

1.2 Solution Initialization  
The innovation of GP lies in the variable sized solution representation which requires efficient initial population 
construction, this feature makes it different from other evolutionary algorithms. Individuals are represented as 
trees constructed randomly from a primitive set. This primitive set contains functions and terminals. A tree’s 
internal nodes are selected from the functions and leaf nodes are selected from the terminals. GP allows variety 
in composition of solution structures using same primitive set. 
Initialization plays an important role in success of an evolutionary algorithm. A poor initial population can cause 
any good algorithm to get stuck in local optima. On the other hand a good initialization can make most of the 
algorithms work sufficiently well. There are few initialization techniques popular in tree based GP.  

Full Method 
This method enforces construction of full trees up to the defined depth. The tree is created by selecting function 
nodes only till the allowed depth. After this depth the nodes are selected from the terminal set only. This method 
forces all trees to be full.  

Grow Method 
Grow method randomly selects nodes from function or terminal set and creates random trees till maximum 
depth-1 achieved, after that only terminal nodes are selected to keep the tree-depth fixed. The trees created with 
such method vary in their structure due to freedom in selection. 

Ramped Half and Half Method 
Koza (4) proposed a combination of full and grow methods to overcome the disadvantages of both methods. The 
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ramped half and half method ramps the number of trees to be created, to the maximum depth and for each depth, 
trees are randomly created using either the full or grow method. This initialization scheme produces diverse and 
bushier trees. The method has been widely applied and found successful. 
Some other methods for tree initialization are ramped uniform initialization (6) and PTC2 initialization (7). 

1.3 Selection  
The evolutionary operators are applied on individuals particularly selected for that operation. The individuals 
are selected using a particular selection mechanism. Two of such mechanisms are defined as follows. 

Tournament Selection 
In this type of selection, a tournament is conducted among few individuals chosen randomly from the 
population. The winner or best member is selected as a result of a tournament. The tournament size determines 
how many random members are selected for the tournament. Tournament size determines the selective pressure; 
large tournament size favors fitter solutions for selection.  

Fitness Proportionate Selection 
All the trees have probability of selection based upon their fitness. The probability of selection for a population 
of size ‘N’ is calculated as  

Pi= /      1 
This is also called Roulette Wheel Selection mechanism. 
Several other selection mechanisms also exist in the literature like Rank Based Selection and Stochastic 
Universal Sampling. 

1.4 Operators 
The most common operators used for evolution of GP programs are crossover, mutation and reproduction. Each 
of these will be discussed in the coming sections. 

Crossover 
Crossover operator works by selecting two parents from the population. Two random subtrees are selected from 
each parent and swapped to create children. Advancements have been made to pure random crossover operator 
in order to make it more efficient and propagate good building blocks among generations. The information 
regarding size (6), depth (8), location (9) or homogeneity (6) of subtrees is also exploited while performing this 
operation.  

Mutation 
Mutation used in GP is of three types  
In point mutation a single node in parent tree is selected and replaced with a random node of same type. E.g. a 
function node is replaced by a function node of same arity and a terminal node is replaced by a randomly 
selected terminal node. 
Shrink mutation selects a node randomly and the subtree rooted at that node is replaced by a single terminal 
node. 
Grow mutation selects a random node and a randomly generated subtree is replaced by the subtree rooted at 
that node. 

Reproduction  
In this operator an individual is selected and copied directly to the new generation without any changes or 
modifications to it.  

1.5 Solution Fitness 
Fitness is the performance of an individual corresponding to the problem it is aimed to solve. It tells which 

elements or the regions of the search space are good. The fitness measure steers the evolutionary process 
towards better approximate solutions to the problem. Fitness of individuals in a population can be measured in 
many ways. It can be measure of error between the original and desired output of a solution. It can be 
compliance of the structure to the task it is required to solve based on a user specified criteria. The difference 
between fitness evaluation in GP and other evolutionary algorithms is that each individual of GP is a program 
which needs recursive execution of the nodes of the tree in precise manner. This adds overhead to the algorithm 
increasing its evolution time and required computational sources. 
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1.6 Termination Condition 
The above mentioned steps are applied during the evolution process in a recursive manner refining the 

solutions from generation to generation. The termination condition determines when this iterative process needs 
to be stopped. The commonly used termination criteria are completion of a given number of generations or 
success in finding a solution of desired fitness. 
 
GP has been considered a useful technique for classification since its inception (4). This paper aims at providing 
an overview of recent work, relevant to classification, and discusses the advancements made to date. We have 
also discussed the related issues that need to be addressed for classifier evolution. Next section provides an over 
view of classification methods proposed so far and classify them into three main categories. We do not claim to 
provide exhaustive overview of methods applied to GP based classification methods. We have excluded graph 
based and linear GP based classification methods in this paper. We have tried our best to cover most of the tree 
based and grammar based methods applied to classification task. However, we present some weakness of the 
task and a framework to overcome them. 
 

2 CLASSIFICATION USING GP 

Several techniques have been proposed to tackle classification using GP. We have categorized these 
classification methods into three types. First type describes the evolution of classification algorithms like 
decision trees, neural networks or other rule induction induction algorithms. This method truly portrays the use 
of GP for program evolution (10). The other method includes evolution of classification rules or expressions. 
Rules are evolved in the form of logical expressions with logical operators. In another type the expressions are 
evolved in the form of arithmetic expressions or functions.  

 
Figure 1 Taxonomy of GP for Classification 

2.1 Evolution of Classification Algorithms 
GP has been used to evolve classification algorithms like decision trees, fuzzy decision trees, neural networks 

and other rule induction algorithms. For such systems a grammar or a set of rules are predefined. Random 
solutions are initialized using these rules. The structures of solution are designed in a way to remain valid after 
application of genetic operators like crossover and mutation to efficiently search the solution space for optimal 
results. This involves defining some specialised and constrained crossover/mutation operators. 

Decision trees are the simple classifiers and GP has been extensively used to evolve them. The work ranges 
from Koza’s explanation (11) to recent (12). Marmelstein (13) and Bojarczuk (14) used standard GP operators to 
evolve decision trees using a defined syntax. Folino (15) used a hybrid GP and simulated annealing system to 
evolve decision trees. Bot (16) has used GP to evolve oblique decision trees, where the functions in the nodes of 
the trees can use one or more variables. In the buildingblock (17) approach, decision trees are built from simpler 
to complex trees during evolution. Eggermont (18) used ‘atomic’ representation to represent decision trees. A 
two layered fitness is used to evolve these trees to prefer smaller trees over larger with same accuracy. A parallel 
GP based approach has been used by Folino using the concept of cellular GP for Decision Tree evolution (19) . 
Decision tree evolution methods suffer from the drawbacks of decision trees. Decision trees are applicable to 
categorical data only. Their efficiency in disturbed if the training data is too small or too large making decision 
trees unstable. Moreover decision tree can become very large requiring further steps for detection and pruning of 
such parts.   

Tsakonas (20) has evolved intelligent structures for classification. He used grammar based GP and presented 
a context free grammar for evolution of decision trees, fuzzy rule based system, feed forward neural networks 
and fuzzy petrinets. Neural Networks and Fuzzy Petrinets are expressed by applying cellular encoding. He used 
six datasets to show the applicability of GP evolved intelligent structures for knowledge discovery.  

The Rule Induction system (21) used grammar based GP where a grammar is used to define rule induction 
algorithms which are automatically evolved using GP. These Algorithms have been found compatible to 
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manually designed rule induction algorithms such as RIPPER and C4.5.  These GP evolved algorithms have 
been tested on real world problems and have achieved comparable performance.  

Autonomous GP Solver (22) has been proposed recently that can construct solutions, store and update 
existing solutions by using an adaptive variant of GP. This autonomous system is able to decide if it knows to 
solve the problem or not. The proposed system is able to handle classification and regression problems. 

Although the evolution of classification structures is an innovative idea, yet the evolved neural networks, 
decision trees or other algorithms do not overcome the basic disadvantages suffered by evolved algorithms like 
neural networks. On the other hand, another layer of difficulty is added to such structures. The above mentioned 
techniques are dependent upon the flexibility and expression of underlying grammar and the operators are 
somewhat constrained to keep the structures of the solutions valid. Grammar based method helps in avoiding 
evolution of meaningless solutions, and reduces the search space among valid candidates only. But this might 
compromise the flexible nature of GP evolution. An inefficient grammar might introduce more constraints 
biasing the efficiency of search process.  

2.2 Evolution of Classification Rules 
In this section we will discuss some state of the art strategies used to extract logical classification rules. These 

are usually in the form of If-Then statements. Decision trees, mentioned in the previous section, can be 
translated into the set of rules by creating a separate rule for each path in the tree (23). However, Individual rules 
can also be learned from training data. GP has been used for evolution of classification rules since long (24).  In 
such systems an individual tree represents a single rule which is created using some predefined logical functions 
and terminals, where terminals define the operands of the rule (attributes values of the data) and consequence of 
the rule is the resultant class. 

Alex Frietas (25) introduced a classic framework to use GP for data mining in 1997. A GP individual encodes 
SQL queries following a grammatical representation of relational database system and is named as Tuple Set 
Descriptor (TSD). The fitness of an individual is computed by executing these SQL queries. The advantage for 
SQL like representation is scalability, data privacy, no redundancy, parallel execution on SQL servers and 
portability across multiple domains. 

Eggermont (26) introduced interesting and understandable ‘atomic’ representations for GP based classifiers. 
An atom is a predicate of the form (attribute operator value) where operator is a boolean function, this is also 
known as booleanization of data applicable to data with different types of attributes. A tree is traversed from root 
to leaf node to determine the class of an instance.  
Wong used GP to evolve rules (27) using inductive logic programming. He introduced the LOgic grammars 
based GENetic PROgramming system (LOGENPRO). The basic concept has been adapted from language 
compilers and makes use of context free grammars to represent and evolve various rule representations utilizing 
different languages. 
Falco (28) used GP to evolve comprehensible simple rules by combining the parallel searching ability of genetic 
programming. The classifier trees are constructed using logical functions and attribute values. A grammar has 
been designed that can represent such rules. It has been shown that the evolved rules are comprehensible, 
emphasize discriminating variables and achieve compatible performance as compared to other classification 
algorithms on benchmark datasets. 
Huang (29) developed a two stage GP S2GP for classification. The system evolves IF-THEN rules in the first 
stage and a discriminating function for the examples not covered by first stage. This system has outperformed 
several conventional classification methods like CART and C4.5 for credit classification problem. Tunsel (30), 
Berlanga (31) and Mendes (32) introduced evolution of fuzzy rules using GP. Chien (33) used fuzzy 
discrimination function for classification. In (34) and (35) Bozarczuk used a GP based approach, where set of 
functions applicable to different type of attributes is defined to represent the rules as disjunctive normal form. 
Several constraints are placed on the tree structure to express a valid rule. This type of GP is also referred as 
constrained syntax GP. Tsakonas (36) introduced two GP based systems for medical domains and achieved 
noticeable performance. Lin (37) proposed a layered GP where different layers correspond to different 
populations performing the task of feature extraction and classification. Some other rule-based classification 
methods include (38), (39) and (40). 

The rule evolution algorithms usually require the data to be of categorical type. If the attributes of data are of 
more than one type and different functions are applicable on different attributes of data, then, some constraints 
on tree structure are required to confirm the closure property. This is called constrained syntax GP. The other 
method is descritization or booleanization of data.  

2.3 Evolution of Classifier Expressions 
GP has gained attention for evolution of classifier expressions for numerical or real valued data. It has 

become popular due to its simplicity, applicability and outstanding performance. These expressions use the 
attributes of data as variables and serve as a discriminating function between classes. The output of such 
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expressions is a single real value. A threshold of positive and negative numbers can serve as a natural boundary 
for two class classification problems. In case of more than one class, several methods have been used, one of 
these is assigning thresholds. The method includes assigning static thresholds (41) (42), dynamic thresholds (43) 
(42) and slotted thresholds (44). Another scheme is binary decomposition. In this technique a classifier for each 
class is evolved separately considering other classes of data as single ‘not desired’ class. All the resulting best 
classifiers are integrated into one final classifier. Classification decision is made based on outputs of all 
classifiers. The classifier with positive output or maximum output is declared winner. Binary decomposition 
methods have been explored in (45) (46) (47) (48) (49). A relatively different, GA inspired, method for 
multiclass classification has been proposed by Durga (50), an amalgamated chromosome (vector) of classifiers 
for all the classes is evolved in single GP run. Other effective multiclass classification methods include Mende’s 
work (51) where two populations are evolved simultaneously, one population contains fuzzy rule sets and other 
population contains membership functions. Both populations are coevolved so that they can effectively adapt to 
each other. Loveard (46) proposed and compared five different methods for multi-class classification. These 
methods are binary decomposition, static range selection, dynamic range selection, class accumulation and 
evidence accumulation. The results revealed that dynamic range selection method is efficient for multiclass 
classification 

3 FITNESS FUNCTION FOR CLASSIFICATION 

One of the most common fitness function used for classification task is the classification accuracy. The accuracy 
tells the number of instances correctly classified by a classifier. Another measure to minimize can be 
classification error which is reciprocal of classification accuracy. Both these measures are not true measures for 
discriminative power of a classifier and can be disturbed by the imbalance of data. To overcome this limitation 
of classification accuracy some researchers have also used area under the convex hull as a fitness measure to 
favor more discriminative rather than accurate classifiers. To evaluate the fitness of a classifier, it is evaluated 
for each data instance and the result adds to or decreases from its overall fitness. Some researchers have also 
used a combined fitness that favors smaller trees, by combining accuracy with a size penalty. The researchers 
have also used more than one fitness measures for classifier evolution task. Such systems are named as 
Multiobjective optimization and make a separate field of research. Multiobjective optimization can be used for 
any of the above mentioned classification type. 

4 MULTIOBJECTIVE GP 

This technique cannot be classified as one of the special technique for classification. This technique can be and 
has been used to evolve classifiers of all the above mentioned types. The main idea behind multi objective 
optimization is to have more than one fitness criteria for each population member and a desire to optimize the 
solutions for each fitness function. The solution must be acceptable with respect to all the fitness functions 
simultaneously. This technique is popular in GP in order to favor simpler solutions because code bloat (increase 
in program sizes during evolution) is a major drawback of GP.On the other hand, in case of classification a 
simple and accurate classifier is desired. Therefore common objectives taken into account for the task of 
classification are classifier size and accuracy. Lichodzijewski (52) proposed an interesting bid based approach 
for co-evolution of GP classifiers. A test population and a learner population are coevolved. Test population is 
subset of training set and each learner has a bid and an action where bid is the program (classifier) and action is 
classification label. The goal of learner is to correctly classify tests. And the goal of test is to accurately 
distinguish between the learners. In (53) two objectives, number of nodes in a tree and misclassification error 
were taken into account. The method was used for the classification of nominal data. Another work for network 
traffic classification has been performed by Ostaszewski (54) where the objective functions are sensitivity and 
specificity of classifiers. The classifiers obtained yielded high performance making it applicable for network 
security problems.  

5 STRENGTHS AND WEAKNESSES 

5.1 Strengths 
Evolutionary algorithms have been found efficient in finding solutions to the classification problems 
autonomously. GP, being one of the evolutionary algorithms enjoys all benefits offered by evolutionary 
algorithms and adds several more. This section discusses several advantages offered by GP for classification.  
GP has inherited the stochastic search properties of evolutionary algorithms and acts as a global search 
mechanism that makes use of hyper plane search. This makes it less likely to get stuck in the local optimum. 
This is different from other methods like neural networks or gradient descent which are prone to local optimal 
values.   
GP enjoys the benefits of variety in solution structures. This is opposed to the fixed size solutions offered by 
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most of the evolutionary algorithms or fixed architectures of neural networks. These programs can contain 
numerous functions, variables and constants usually desired in various problem solving. This usually eliminates 
the need of having different genotype to phenotype encodings (45).  This feature helps GP to search for better 
solutions by giving freedom of expression to search for relationships, and importance of different attributes in 
data. These flexible representations help GP to automatically model the inherent data dependencies in its 
evolving structures and the algorithm may not require any explicit information or preprocessing regarding class 
or attribute dependencies (45). GP can automatically eliminate attributes unnecessary for the classification 
performing the task of feature extraction algorithm (45). Similarly important attributes can appear near the root 
whereas less important ones would appear deeper in the tree (55).  GP is able to operate on chunks of data to 
extract meaningful rules. There is no need to use all of the training data to evolve classifiers. (45) (50). A form 
of incremental learning has been sucessfully used for evolving classifiers by GP. The classifiers obtained 
through GP are usually understandable and transparent (14) (38). They are like white boxes that clearly portray 
the relationships of attributes required for a particular class, as opposed to many other black box solutions like 
neural networks (17).  GP evolves the classifiers in the form of a program. We can simply evaluate the final 
classifier (program) for the classification decision. This helps in easy and fast interpretation of results. These 
expressions or programs are easily portable in tools like spread sheets or MATLAB for future data evaluation 
(17). The classifier representations differ in each separate execution, so we can extract several different 
classifiers with same or slightly different accuracy. This is also called lack of population convergence. Although 
undesirable in few cases, it can search variety of solutions for a same problem. 
GP has the ability to operate upon the data in its original form. No preprocessing or data transformations are 
usually required to apply GP for classification task. For example GPCE (45) (50) can use real valued data and 
categorical data has been used in another application (18) for evolution of logical rules. Yet, we might need type 
conversions for classification of mixed type of data (56). GP based classifier evolution is not affected by the data 
distribution (45). This is in contrast to the neural networks which are highly dependent on the data distribution. 
This autonomy enables efficient discovery of unknown knowledge from the data.  
Above mentioned benefits are also reported by Poli (5), in which GP is said to perform well for the problems 
having properties like unknown interrelationships of variables, Finding size and shape of solution is a part of 
problem, Test data availability, Failure of conventional mathematical analysis, Acceptability of approximate 
solutions, Improvements in performance in measureable and availability of simulators to measure the 
performance of solutions but poor methods to obtain the solution itself. We can observe that all these properties 
are inherent in the problem of classification, making it feasible application domain for GP. All these factors 
make GP rather attractive to use for classification problems. Numerous researchers have applied GP for the said 
task and we can find loads of work done in the field. The missing item in all this work is a meaningful 
categorization and analysis of these techniques.  In the next section we will present the taxonomy of several 
classification methods present in the literature.  
5.2 Weaknesses 

In the previous section we have discussed numerous advantages of using GP for classification. GP suffers 
from a few problems as well. Most of these problems are general and not specific to the classification problem 
only. These issues have received lesser attention in the classification scenario in the past. Few researchers have 
attempted to tackle individual problems recently but a definite solution has yet to be found. 

The drawback of GP is the necessity of frequent evaluation of fitness (usually recursive) of each program in 
the population in each generation. If we have ‘N’ population size and ‘E’ generations the number of fitness 
evaluations would be N*E. We know that the datasets tend to have loads of data, and a classifier must be 
evaluated for each instance in data, making the evaluation of an individual the most time consuming operation 
of the algorithm. GP suffers from well known phenomena of bloat. The sizes of evolving structures start 
increasing without any corresponding increase in the accuracy of programs. This increases the training time of 
already computational greedy task and size of resultant classifiers. On the other hand, it is commonly believed 
that simpler classifiers exhibit better generalization abilities. This phenomenon also affects the 
comprehensibility of discovered classifiers.Although considerable work has been done to tackle the problem of 
bloat (57) but most of this work is not in the context of classification. GP based classifiers are either applicable 
to nominal or numerical data. For both types of data to work, we must perform conversion from one type to 
another. The need arise for a robust mechanism to classify mixed types of attribute data. Different GP runs yield 
different results in each execution. These results usually differ in fitness as well as structure. This common 
property of GP is referred as lack of convergence and may prohibit a GP system to find optimal results for every 
execution. GP has been successful in classification for various applications. But it lacks a proper methodology 
that could be applied for multiclass classification. Several methods for multiclass classification have been 
proposed but the technique lacks a definite solution.  
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6 PROPOSED ADJUSTMENTS 

We have proposed some possible modifications to GP targeted for classifier evolution. Some of these techniques 
have been attempted by few researchers individually but the work has not been integrated as a single system, or 
no comparison of these methods has been performed. One could consider all of these factors for classifier 
evolution. 

The problem of long training time can be tackled by using some efficient search strategy, one example of 
such search mechanisms is “pyramid search ‘proposed by Loveard (58). After few generations the solutions 
below certain fitness are eliminated from the population in assumption that they are not playing an important 
role in evolution and fitness enhancement. This is one such method incorporated to reduce training time for 
classifier evolution. Some other intelligent search methods can be devised to avoid training time. Besides 
reducing the population size, we can also reduce the training samples to decrease the training time. A similar 
method named incremental learning has been used by Muni (50) and Kishore (45) . 

Bloat is the major bottle neck of GP for classifier evolution.  Several methods have been proposed in 
literature to avoid bloat and some of them have been used in classifier evolution. Winkler (59) used sizefair 
crossover (6), Muni (50)and Kishore (45) used tree size limits. Eggermont (18) used two layered fitness. 
depthdependent (8) crossover was used  by Badran (53). But none of these methods have been designed for 
classifier evolution, or compared with traditional GP in case of classification. One such work can be found in 
(60) , where depthlimited crossover operator has been proposed to eliminate bloat and evolve simpler classifiers. 
But there is a need for introduction of specialized crossover that does not let classifiers increase in size 
unnecessarily as larger classifier compromise the generalizing ability of a classifier. Zhang (61) used an online 
simplification approach that simplified algebraic expressions by applying reduction formulas using a hashing 
method. Other methods include tree complexity penalty in fitness evaluation (parsimony pressure) (5), limits on 
crossover operations like size fair crossover operator used for GP based classifier evolution (59) have been used 
for classifier evolution and limits on maximum tree size (50). 

The problem of lack of convergence can be handled by using some optimization mechanism that can increase 
the efficiency of evolved classifiers. A unique method (62) performs gradient search for optimization of 
ephemeral constants or numeric constant values present in GP trees producing better results for symbolic 
regression. Zhang (63) applied offline and online learning method for learning of ephemeral constants in a GP 
tree using gradient descent for object recognition that outperformed traditional GP. The gradient descent 
algorithm is augmented to the existing GP system, by application on each program in population in a generation. 
The remaining evolutionary process remains conventional. The results conclude that online scheme offers better 
performance. The online learning is similar to incremental learning in Neural Networks and offline is similar to 
batch training in Neural Network. In another motivating work, (64) weights are added to all the edges present in 
a GP expression tree. These weights are then updated using gradient descent based local learning mechanism 
during the evolutionary process. The local learning phase is augmented with the traditional evolution of GP 
expressions. The method was found efficient in terms of accuracy. Both methods proposed by Zhang are 
coupled into the GP, increasing the complexity of already computational extensive task, although considerable 
increase in performance has been achieved.  

The robustness problem has been handled by Loveard (56) by exploring four different techniques for using 
categorical attributes. These were mapping to integer values, using indicator variables, multi branching based on 
attribute values and if-then nodes. Later Badran (53) investigated the former two techniques and concluded that 
for ordered attributes integer mapping works best and for nominal attributes indicator variables yield best 
performance. 

Finally, for the problem of more than one class, one of the proposed methods is to assign thresholds. The 
thresholds could be static (41) (42), dynamic (43) (42) and slotted (44). The problem with this method is that it 
is applicable to the expressions that output real value rather than boolean value. Another scheme for multiclass 
classification is binary decomposition; a classifier for each class is evolved separately considering other classes 
of data as single ‘not desired’ class. All the resulting best classifiers are integrated into one final classifier. 
Classification decision is made based on outputs of all classifiers. The classifier with positive output or 
maximum output is declared winner. Binary decomposition methods have been explored in (45) (46) (47) (48) 
(49) (50). The major drawback of both the approaches is the conflict between more than one classifier that 
should be handled intelligently.  

It is suggested that all of these measures should be taken into account to come up with an efficient and robust 
classification method.  
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7 CONCLUSIONS 

We have seen that GP can perform the task of classifier evolution effectively. It has achieves compatible or 
better performance in many instances. Besides this success GP based classifier evolution suffers from several 
problems like long training time, bloat and lack of convergence. The need arise for efficient optimization steps 
for the task of classifier evolution using GP. The present classification techniques lack robustness, any measures 
to decrease the training time, making the classifiers bloat free and any mechanism to overcome the problem of 
lack of convergence. 
Although being an interesting technique applicable for data classification, GP need more attention to mature. 
There are only few researchers actually progressing towards GP based intelligent and autonomous classification. 
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